オンラインカジノゆうちょ銀行

<ウェブサイト名>

<現在の時刻>

出典: 標準

Support Kyushu U 日本語 ENGLISH Prospective students Current students Companies & researchers Alumni Crisis Management News Events About Office of the President University Overview Kyushu U Connect Fast Facts Public Relations Featured Academics Schools & Centers The Global University Project Alumni Resources Donation Activities and Initiatives Future Plans University Facilities Academics Faculty of Arts and Science Schools Distinctive Education Programs Double Degree Programs Student Exchange Programs Short-term Study Programs The 3 Policies: Diploma, Curriculum, and Admissions Course Registration Academic Calendar Admissions Undergraduate Admissions Graduate Admissions Tuition, Fees & Scholarships Information for International Students Campus Life Facilities and Healthcare Extracurricular / Student-Led Activities Careers & Employment Procedures Contact Information for Consultations Research Research at Kyushu University Academic Staff Educational and Research Activities Database Research Activity Support Industry-University -Government Collaboration Support Research Centers and Projects Framework to Support Collaborated Research Research Integrity 日本語 ENGLISH News Topics Features Research Close-Up Notices Important Research Results Humanities & Social Sciences Art & Design Life & Health Math & Data Physics & Chemistry Materials Technology Environment & Sustainability Events Event Calendar Categories Public Seminar Lecture, etc. Exhibition Other Place Ito Campus Hakozaki Satellite Hospital Campus Chikushi Campus Ohashi Campus Beppu Campus Off Campus About Office of the President Message from the President Kyushu University VISION 2030 Biography Honorary Doctorates History of the Presidency Kyushu U Connect University Overview Organization Charter Presidential Selection Regulations and Policies History Future Plans Mid-Term Objectives and Plans Public Relations Publications Press Releases Promotional Videos University logomark List of Social Media Accounts Virtual Backgrounds Virtual Backgrounds (Archive) Featured Academics Campus Relocation Ceremony to Commemorate Completion of Ito Campus University Facilities Alumni Resources Alumni Associations Donation Donations to Schools, Graduate Schools, and Researchers, etc. Activities and Initiatives Promoting Diversity, Equity, and Inclusion QS-APPLE 2019 Response to the 2016 Kumamoto Earthquake Schools & Centers Research Institutes Centers for Common Education and Research Organizations and Offices Hospitals Libraries Museums Others Academics Faculty of Arts and Science Schools Educational and Research Course The 3 Policies Academic Calendar Course Registration Curriculum Registration / Syllabuses Distinctive Education Programs Program for Leading Graduate Schools Admissions Undergraduate Admissions Enrolling in Undergraduate School Applicants with Disabilities Graduate Admissions Applicants with Disabilities Enrolling as a Research Student Tuition, Fees, & Scholarships Tuition and Fees Enrollment Fee Exemption/Deferment and Tuition Fee Exemption for Newly-enrolled Students Scholarships Payment of tuition Tuition Fee Exemption, Enrollment Fee Exemption/Deferment Financial Aid Double Degree Programs Student Exchange Programs Campus Life Facilities and Healthcare Student Facilities Dormitories Healthcare Personal Accident Insurance for Students/ Liability Insurance Careers & Employment New Information How to use Job and Career Support System Career Consulting Job Hunting Support for International Students Recruitment of International Students Extracurricular / Student-Led Activities Procedures Certificates National Pension System for Students Contact Information for Consultations One-Stop Consultation Service Research Research at Kyushu University Humanities and Social Sciences Art and Design Life and Health Math and Data Physics and Chemistry Materials Technology Environment and Sustainability Research Close-Up Research Centers and Projects Next-Generation Fuel Cell Research Center (NEXT-FC) Research Activity Support On-campus Consultation Research Strategy Promotion Support for Research Funding and Grants Support for Other Research Activities Industry - University - Government Collaboration Support Technological Consultation Intellectual Property Management and Use Joint Research/Sponsored Research Comprehensive Collaboration Joint Research Department Research Integrity Framework to Support Collaborative Research International ・Prospective students ・Current students ・Companies & researchers ・Alumni ・Support Kyushu U Crisis Management ・Contact Us ・Visit ・Career ・Disclaimer & Copyright ・Privacy Policy ・Sitemap 研究成果 Research Results TOP News Research Results Getting more power from renewable-based microgrids Getting more power from renewable-based microgrids Novel and low-cost control scheme that increases power extracted from local renewable sources could help accelerate utilization of renewable energy in buildings 2022.01.31 Research ResultsTechnologyEnvironment & Sustainability   A new scheme developed by Kyushu U researchers for controlling the flow of power generated from renewable resources connected in a small-scale, local power grid could increase yearly power production by 2% compared to current systems if applied on the Chikushi campus. Such improvements are important for increasing the use of renewable energy through so-called microgrids, which can help reduce demand for electricity from traditional power plants and greenhouse gas emissions by buildings toward meeting climate change goals. Unlike the central power grids that currently serve electricity to numerous customers over vast expanses, renewable-based microgrids independently manage and distribute electricity produced locally from solar, wind, biomass, and other resources for use over smaller areas. They also coordinate energy storage and distribution of additional electricity from the central grid as needed. Essential to making microgrids work and getting the most power from each installed electricity source are advanced control systems that integrate customers’ electrical usage and keep the generators operating near optimal conditions. “The output power of a hybrid renewable microgrid varies with environmental conditions such as sunshine, wind, and operating temperature. To extract the maximum power from the microgrid for the conditions at a particular instant of time, we employ maximum power point tracking, or MPPT, techniques. The better the tracking, the more power we can obtain,” explains Hooman Farzaneh, associate professor at Kyushu University’s Faculty of Engineering Sciences. Through work funded by the Kyushu Renewable Energy Agency, Farzaneh and his team from the Energy and Environmental Systems (EES) laboratory at Kyushu U’s Interdisciplinary Graduate School of Engineering Sciences (IGES) have developed a novel and low-cost MPPT control system that can be applied to a simple renewable-based microgrid consisting of a wind turbine, a solar cell array, and battery storage. “Many algorithms have been developed to efficiently track the maximum power point, but they generally suffer from two drawacks,” elaborates Farzaneh. “First, the tracking is often slow. Second, intermittency and rapid changes in sunshine and temperature can cause the tracking to oscillate around one of the multiple local peaks of power.” To overcome these drawbacks, Farzaneh and his team introduced a new tracking scheme based on fuzzy logic control, which provides rapid control and small oscillations once it reaches the maximum power point even under varying weather conditions. Unlike traditional computer logic that is based on all or nothing conditions, fuzzy logic is more similar to human thinking in that it represents the various states of a system over spectra that can be expressed as words based on rules made by the developers. So, instead of light just being dark or bright, it could be represented as varying degrees of dark, dim, bright, and blinding, and actions can be chosen based on whether it is very dark or a little bright.  Using this approach allowed the tracking control to more rapidly and accurately change the flow of the electricity out of generators depending on weather conditions to keep them running near their maximal power points, resulting in more power output from the microgrid. In addition to performing modeling and simulations of systems that also control battery charging for energy storage and inverter output voltage and frequency for meeting the AC load requirements, the reseachers tested and validated the developed control system using an outdoor hybrid renewable test setup located on the Chikushi campus. Based on tests considering a sunny, cloudy, and rainy day in each month in 2020, the researchers confirmed the better performance of their system in a variety of climates. Compared to existing commercial systems on the market, Farzaneh and his team estimate that their proposed MPPT can realize an extra 26.2 kWh of electricity per year from each kilowatt of installed capacity of solar panels on the Chikushi campus—corresponding to a 2% increase in power production. “While costs are important, the advantage of using such MPPT can facilitate the rapid deployment of hybrid renewable-based microgrids in the residential sector in Japan,” says Farzaneh. The researchers are now more accurately analyzing the system using a new indoor microgrid test system, which includes an artificial solar power simulator and wind turbine emulator, that they constructed to allow them to take into account sudden changes in sunlight and wind speed. ### For more information about this research, please see the following publications. “Techno-economic analysis of a fuzzy logic control based hybrid renewable energy system to power a university campus in Japan,” Tatsuya Hinokuma, Hooman Farzaneh, and Ayas Shaqour, Energies 14, 1960 (2021). https://doi.org/10.3390/en14071960 “Power control and simulation of a building integrated stand-alone hybrid PV-wind-battery system in Kasuga City,” Ayas Shaqour, Hooman Farzaneh, Yuichiro Yoshida, and Tatsuya Hinokuma, Energy Reports 6, 1528–1544 (2020). https://doi.org/10.1016/j.egyr.2020.06.003 Research-related inquiries Hooman Farzaneh, Associate ProfessorDepartment of Advanced Environmental Science and Engineering, Faculty of Engineering Sciences Contact information can also be found in the full release. Kyushu U Connect Tweet Back to the list TOP News Research Results Getting more power from renewable-based microgrids Research Results Humanities & Social Sciences Art & Design Life & Health Math & Data Physics & Chemistry Materials Technology Environment & Sustainability Year 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 九州大学Kyushu University744 Motooka Nishi-ku Fukuoka 819-0395 Contact Us | Visit Career Academics Disclaimer & Copyright Admissions News Privacy Policy Research Events Sitemap Campus Life About COPYRIGHT © KYUSHU UNIVERSITY. ALL RIGHTS RESERVED.

ブックメーカー登録 link188betclub オンカジ稼ぐ スポーツベットアイオーの遊び方|登録方法や評判を解説
Copyright ©オンラインカジノゆうちょ銀行 The Paper All rights reserved.